
Drawing shapes with ShapeContainer

Global settings

The VAirDraw base Application class stores and manages the applications's current drawing

mode (lines or shapes). It is stored inside the Application::drawingMode attribute and must be

set to DrawingModes::LINES_AND_SURFACES value in order to start drawing shapes.

This is what is done through the Toolbox::CHANGE_DRAWING_MODE action, associated with the

drawing mode integer value as parameter. The example below shows the drawing mode

configuration part, setting the initial mode to 0 (DrawingModes::LINES_ONLY).

"toolbox" : {

 "actions" : [

 [<button_index>, "change-drawing-mode", 0]

]

}

Note that the mode value can also be set in Toolbox::update() method if you only need to

switch between two modes with the same toolbox button.

ToolBox::Event &ToolBox::update(bool isDrawing)

{

 ...

case CHANGE_DRAWING_MODE:

 {

 ...

 drawingMode = (drawingMode == LINES_ONLY) ? LINES_AND_SURFACES : LINES_ONLY;

 action.param = (int)drawingMode;

 }

break;

 ...

}

Setting drawingMode to LINES_AND_SURFACES indicates the Pencil object to send input points

to the ShapeContainer object used for drawing shapes in the scene. Each time

Pencil::update() is called with new points to draw, the Pencil is given the right

LinesContainer object to store them thanks to Application::getDrawingContainer() . The

Pencil object also notifies the ShapeContainer object that new points have been provided to

this LinesContainer if it belongs to a shape.

void Pencil::update()

{

 ...

// when we detect that the user has provided new points

if (app->getDrawingMode() == Application::LINES_AND_SURFACES) {

 notifyCount++;

if (notifyCount >= NOTIFY_LIMIT) {

 app->getShapeContainer()->updateLastShape();

 notifyCount = 0;

 }

 }

 ...

}

Pencil::NOTIFY_LIMIT indicates the number of Pencil::update() calls before updating the

resulting shape.

ShapeContainer

Every operation related to drawing and displaying shapes in the scene are handled by the

ShapeContainer class (see Apps/ShapeContainer.h).

Container instanciation

ShapeContainer overrides the base class Container , so you just need to create and add a

ShapeContainer object at the desired location inside the scene graph. Adding the object to

Application::mainScene.world should be convenient for most usages.

// Within Apps/Application.cpp

shapeContainer = new ShapeContainer();

mainScene.world.addNode(shapeContainer);

Create and display shapes

A ShapeContainer object stores a list of Shape objects, which are used to monitor each shape's

geometry computations and conversion into displayable meshes.

class ShapeContainer

{

 ...

private:

std::vector<Shape *> shapes;

 ...

}

A call to ShapeContainer::beginShape() creates a new Shape , which has its own

LinesContainer reference. This is the object the Shape will look at when needing to retrieve the

input points to generate a mesh. When the user is drawing, the Pencil asks the Application

for the LinesContainer of the current shape (ShapeContainer::getLastLinesContainer()) in

order to add new points to it.

Each call to ShapeContainer::updateLastShape() triggers the computation of a new mesh from

the whole set of points stored inside the last Shape 's LinesContainer object.

The user also needs to end the current shape and start a new one. This is what

ShapeContainer::endLastShape() stands for. It triggers the generation of a high resolution

mesh, unlike "preview" meshes displayed while the user is still drawing which have lower

resolution for performance.

If you just need to draw shapes one after another with no access to the previous ones,

beginShape() , getLastLinesContainer() , updateLastShape() and endLastShape() should

be sufficient. You can also access a specific shape, whatever it is the last or not, by specifying a

unique ID as the first argument of the beginShape() method as shown below.

shapeContainer->beginShape(<shape_id>);

The shape's unique ID can be given as the first argument of getLinesContainer() and

updateShape() to manipulate this shape using the same principle.

LinesContainer *lc = shapeContainer->getLinesContainer(<shape_id>);

// do stuff on the LinesContainer (add points, new lines...)

shapeContainer->updateShape(<shape_id>);

// ...

shapeContainer->endShape(<shape_id>);

This is precisely what is used when we retrieve shapes from files and want to generate them again

inside the scene (see | Apps/Replay/ReplayCapture.cpp and Apps/DrawCaptureLoader.cpp).

Shape class

Shape encapsulates all the necessary features to compute and display mesh-based shapes from

a LinesContainer input. For this purpose, it holds a reference to a ShapeGeometry object

(Shape::geometry) which is provided with all the points from the LinesContainer each time

Shape::update() is called.

bool Shape::update(const bool &highResolution, const glm::u8vec4 &color, const bool &refreshCurves)

{

 ...

 newLine = linesContainer->getLineNewVertices(lineNewVertices);

 geometry->addCurveVertices(lineNewVertices, newLine);

 ...

 ...

 geometry->updateSurface(highResolution);

 ...

}

The resulting mesh is then passed to a ShapeView object reference (Shape::view), which

converts the result into a displayable mesh.

 view->update(geometry, color);

Computations with ShapeGeometry

ShapeGeometry holds and monitors all processes related to the computation of meshes from 3D

points. It holds a reference to a ApproxSurface object responsible of the actual computation,

based on a CurvesSet object storing the input points in the adapted format (see

SurfaceGenerator/ApproxSurface.cpp).

It also manages the type of shape to be computed (ShapeGeometry::type). From the

Application 's point of view, the type is modified using

ShapeContainer::setCurrentType(<type_value> and changes are taken into account in the last

ShapeGeometry object of the last shape.

The current shape's resolution values (low when drawing, high for ended shapes) are stored as

static members of this class and can be set from the configuration file.

"application" : {

 ...

"shapes" : {

"resolution" : {

"plane" : [30, 90],

"octahedron" : [10, 30]

 },

 }

 ...

}

Display with ShapeView

As geometry is processed in a specific format (Eigen library data structures), resulting shapes

need to be converted to displayable meshes. This is what ShapeView stands for. It retrieves the

geometric result (vertices, faces and normales) as Eigen matrices and renders a

Mesh<MCVertex> . It is responsible of its own rendering, overriding the base class Node . When a

new shape is created from the ShapeContainer , the shape's view is added to this container along

with the LinesContainer object to display the lines.

void ShapeContainer::beginShape(const int &shapeId, const int &userId, const int &type,

{

// check if shape already exists

 ...

// Create a new shape if necessary

if (!shape) {

 shape = new Shape(shapeId, userId, type, sublayer);

 shapes.push_back(shape);

this->addNode(shape->getLinesContainer());

this->addNode(shape->getView());

 }

}

Every display option is handled by this class to generate the appropriate mesh. The name of

shader programs used for rendering are stored as static members of the class

(ShapeView::shapeShaderPrograms), mapped to each geometry type value. Shader programs

can be set for each geometry type inside the json configuration file.

"application" : {

 ...

 "shapes" : {

 "shading-programs" : {

 "plane": "DiffuseMesh",

 "octahedron" : "ReflectMesh"

 }

 }

}

Other options are responsible of alternate and wireframe renderings (resp. highlight a specific

shape when picked by the user, and display edges of the mesh). See ShapeView::render() for

more details about how these parameters are handled when rendering the mesh.

