
Intersection detection with Collider
Presentation
The Collider class is a generic interface to find intersections with 3D objects in the
VAirDraw scene, from either a ray or a position.

Each inherited class represents a shape-specific collision detection system. Some are
implemented for simple shapes (SphereCollider , CylinderCollider , BoxCollider ,
MeshCollider). See SceneGraph/Colliders/Collider.h for more details.

A specific abstract class is used for mesh-based colliders (MeshCollider), as different
acceleration structures exist to detect collisions on meshes.

Colliders are compatible with model and 3d-shape content types in scenery files. The
example below is available inside assets/sceneries/test_collisions.json .

{

"content" : [

 {

 "type" : "model",

 "file" : "models/batman/batman70.fbx",

 "transform" : { "translation" : [0.0, 1.0, 0.0] },

 "collider" : {

 "enable" : true,

 "debug-display" : true,

 "use-cache" : true,

 "closed" : true,

 "type" : "octree",

 "depth" : 5,

 "build-type" : "full",

 "proximity-search" : true

 }

 },

 {

 "type" : "3d-shape",

 "name" : "sphere",

 "dimensions" : { "radius" : 0.5 },

 "transform" : { "translation" : [0.0, 1.0, -1.0] },

 "collider" : { "enable" : true }

 },

 {

 "type" : "3d-shape",

 "name" : "cylinder",

 "dimensions" : { "radius" : 0.2, "height" : 0.5 },

 "transform" : { "translation" : [1.0, 1.0, -1.0] },

 "collider" : { "enable" : true }

 }

]

}

You can see that collider properties differ according to the content type. However all
colliders provide at least enable and debug-display options. Note that the latter is
implicitly enabled on 3d-shape content type, as basic objects and their collider have the
exact same geometry.

"collider" : {

 "enable" : true,

 "debug-display" : true,

 // ...

}

Mesh-based colliders specific properties

"collider" : {

 // ...

 "use-cache" : true,

 "closed" : true,

 "type" : "octree",

 // ...

}

Mesh-based colliders are already used on 3D models ("type" : "model") and Shape
objects stored inside ShapeContainer objects. For these, several options are available.

use-cache : whether computed collider(s) must be stored in cache files. This highly
increases the time for loading at next application startups. When adding the same
model several times to the scene, consider using the exact same collider
configuration. Otherwise, cache will work only for one of these configurations.
closed : whether the underlying mesh has to be considered as closed. Collision

tests for open and closed surfaces are not the same.
type : type of acceleration structure to use for the collider. Two types have been
available so far ("bounding-box" , "octree"). The first one is a simple bounding box.
The second one's principle is detailed in the next section.

Octree colliders specific properties

"collider" : {

 // ...

 "depth" : 5,

 "build-type" : "full",

 "proximity-search" : true

}

When type is set to octree , a tree structure containing cuboids (i.e. sub-cubes of an
initial bounding cube) is constructed (see https://en.wikipedia.org/wiki/Octree). Each
cuboid potentially contains zero, one or several primitives from its proxy, referenced by an
object ID and an element ID (see IPrimitiveProxy::Element in
Renderer/PrimitiveProxy.h).

The octree traversal procedure via raycasting guarantees that we always retrieve, if
existing, the closest intersection from the ray's origin.

depth : number of subdivision levels inside the octree. The more you increase this
number, the more mesh primitives are partitioned and intersection tests are fast.
Note that performance stabilizes at depth levels around 67 where primitives
dimensions become bigger than partitioning sub-cubes, making further partitioning
useless.
build-type : octree construction can use two different techniques

"fast" : primitives are stored in their smallest bounding node in the tree, even
if it is not a terminal one
"full" : primitives are only stored inside terminal nodes. Note that triangles
can sometimes appear in several nodes, as the only condition of storage of a
primitive in a terminal node is intersecting with this node. As names suggest,

https://en.wikipedia.org/wiki/Octree

this method takes more (and sometimes very long, be careful) time to build
the octree.

proximity-search : whether the collider can use the latest intersected node when a
new collision test is requested. When enabled, we proceed with an down-to-up
search in the tree, starting from the last intersected nodes. This is particularly
efficient when collider is used in a continuous intersection use case, i.e. where two
successive intersections (in time) are often close to each other in space. This is
particularly the case when drawing on a mesh, for example and can make the
collider more efficient. This mode is only available with build-type set to full .
Note that this traversal method breaks the closest intersection guarantee.

Usage from nodes of the scene graph
Collisions are tested on Node objects through the Node::searchIntersection method,
with either a 3D position or a ray. The usual process is to traverse the scene graph from
the scene root Container and test each composing Node children recursively. The
example below illustrates a raycast initiated from the user's pointed direction.

// Apps/Pointer/Pencil.cpp

void Pencil::update()

{

 // ...

 Intersections::Ray rayToCast {glm::vec4(pointerPosition, 1.0f),

glm::vec4(pointerDirection, 0.0f)};

 IntersectionInfo *newIntersection = new IntersectionInfo();

 app->getWorldContainer()->searchIntersection(rayToCast, newIntersection);

 // ...

}

IntersectionInfo is the base class to store data about the collision if one was found.
More information is added in some Container derived classes by overriding
IntersectionInfo (see Apps/LinesContainer.h , Apps/ShapeContainer.h).

The IntersectionInfo object is instanciated from the caller, and the intersecting Node , if
existing, fills the object with relevant data in its own Node::searchIntersection()
method.

// Misc/Intersections.h

class IntersectionInfo

{

public:

 float distance {FLT_MAX};

 Node *node {nullptr};

 glm::vec3 position {0.0f};

 glm::vec3 normal {0.0f};

 IntersectionInfo() {}

 virtual ~IntersectionInfo() {}

 virtual void reset(float dist = std::numeric_limits<float>::max()) {

 distance = dist; node = nullptr; position = glm::vec3(0.0f); normal =

glm::vec3(0.0f);

 }

};

Collision detection inside a Node-derived class
Each Node has a shared_ptr<Collider> reference. The purpose of Node::enableCollider
is precisely to create the desired Collider object according to the current Node derived
class type. You can either instanciate basic colliders (see
SceneGraph/Colliders/BasicColliders.h) or mesh-based colliders through the factory
method MeshCollider::create (see SceneGraph/Colliders/Collider.h). An example of
MeshCollider instanciation from Node::enableCollider overridden method is shown
below in the Mesh<VertexT> class.

// SceneGraph/3DObjects/Mesh.inl

template<typename VertexT>

void Mesh<VertexT>::enableCollider()

{

 if (!colliderProperties || !colliderProperties->enabled) {

 logstreams::error << "Collider is disabled on mesh " << this <<

std::endl;

 return;

 }

 // TODO : change collider if a new one is requested...

 if (Node::collider) return;

 if (colliderPath.empty()) {

 logstreams::error << "No collider file name was specified on mesh " <<

this << ". Collider will not be enabled." << std::endl;

 return;

 }

 Node::collider = std::shared_ptr<Collider>(MeshCollider::create(this,

colliderProperties, colliderPath));

}

In this case, Collider::Properties are either loaded using a json-based object (see
collider fields of assets/sceneries/test_collisions.json) through a factory method
Collider::importProperties , or instanciated programmatically according to the
Collider type you wish to use (see OctreeCollider::Properties in
SceneGraph/Colliders/OctreeCollider.h for instance).

When the object has a reference to a Collider other than nullptr ,
Node::searchIntersection asks the Node 's Collider object for a potential collision with
the point/ray. As every collider is built in the Node 's local space, the intersecting
position/ray is always converted in this space before intersecting it.

// SceneGraph/Node.cpp

bool Node::searchIntersection(const Intersections::Ray &ray, IntersectionInfo

*&outResult)

{

 if (!collider || !isVisible()) return false;

 Intersections::Ray localRay = Intersections::RayApplyMatrix(ray,

getInvMatrix());

 if (collider->raycast(localRay, outResult)) {

 // If no additional information is needed by the caller

 if (!outResult) return true;

 outResult->position = glm::vec3(getMatrix() * glm::vec4(outResult-

>position, 1.0f));

 glm::mat3 normalMat =

glm::mat3(glm::inverse(glm::transpose(getMatrix())));

 outResult->normal = glm::normalize(normalMat * outResult->normal);

 outResult->node = this;

 return true;

 }

 return false;

}

The IntersectionInfo pointer is passed from the Node object to its Collider which
provides geometric information about the intersection (distance, position and normal).
The coordinates are then converted back into the global space.

You can override the generic Node::searchIntersection method if your Node derived
class needs a different behaviour to detect intersections. For example, it would not make
sense that the Container class have its own Collider . Colliders are yet useful for each
of its children nodes. Therefore Container::searchIntersection just propagates the
searchIntersection request to its children.

bool Container::searchIntersection(const glm::vec3 &position, IntersectionInfo

*&outResult)

{

 if (!isVisible()) return false;

 glm::vec3 localPosition = glm::vec3(getInvMatrix() * glm::vec4(position,

1.0f));

 for (const auto& node : nodes) {

 if (node->searchIntersection(localPosition, outResult))

 return true;

 }

 return false;

}

Implement a specific Collider

Base Collider class

Every Collider stores the necessary geometric information for its inner structure. Once
constructed, the Collider must be able to test intersections with a local
Intersections::Ray and a glm::vec3 3D position. For this purpose, implement
Collider::raycast and Collider::contains for your Collider type. These

implementations will then be called from the corresponding Node 's searchIntersection
method when looking for intersections.

class Collider

{

public:

 // ...

 virtual bool raycast(const Intersections::Ray &ray, IntersectionInfo

*outResult = {nullptr}) { return false; }

 virtual bool contains(const glm::vec3 &point, IntersectionInfo *outResult =

{nullptr}) { return false; }

 // ...

}

You can also override the Collider::debugDisplay method to add a mesh representation
of the collider geometry when debugging. See example below for a BoxCollider .

// SceneGraph/Colliders/Collider.cpp

void BoxCollider::debugDisplay(Container *container)

{

 Box *box = new Box(0.5f * (bbox.minPos + bbox.maxPos), bbox.size,

debugColor);

 container->addNode(box);

}

The Intersections namespace contains utility functions to test and compute
intersections between basic 3D objects (see Misc/Intersections.h).

Mesh-based Collider classes

Some colliders need an access to their referring primitive's inner geometry to be
constructed and be able to test intersections on them. Proxies (see
Renderer/PrimitiveProxy.h) are used to protect geometric primitives while allowing this
access.

If you want to implement a Collider based on a triangular mesh structure, use the
MeshCollider base class. It gives an access to the associated mesh's geometry through
the IPrimitiveProxy interface, which can be used to build the collider's inner structure.

// SceneGraph/Colliders/OctreeCollider.h

class MeshCollider : public Collider

{

// ...

public:

 static std::shared_ptr<MeshCollider> create(IPrimitiveProxy *px,

std::shared_ptr<Properties> props, const std::string &cacheFilePath, const

unsigned int &importFlags = {});

 MeshCollider(IPrimitiveProxy *meshProxy) : meshProxy(meshProxy) { }

 // ...

};

The usual process is to implement the PrimitiveProxy<PrimitiveT, EltS> interface using
CRTP (see https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern) for your
primitive, and then creating your collider from this primitive inner scope, specifying this
as first parameter the to MeshCollider constructor (see instruction from
Mesh<VertexT>::enableCollider() below).

// SceneGraph/3DObjects/Mesh.inl

template<typename VertexT>

void Mesh<VertexT>::enableCollider()

{

 // ...

 Node::collider = std::shared_ptr<Collider>(MeshCollider::create(this,

colliderProperties, colliderPath));

}

Along with configuration options from MeshCollider::Properties explained before, you
can also disable the use of proxies on a collider by calling
MeshCollider::setUseProxy(false) . In this case, intersections will only be computed on

the collider base structure (terminal sub-cubes for octrees) instead of primitive
elements such as triangles, thus giving more approximate positions and orientations
but should result in faster intersection tests.

Overridden methods

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Any mesh-based collider must override some methods to function properly.

virtual void compute() { }

Place inside compute 's body all the required instructions to build your Collider structure.

virtual std::string getFileExtension() { return ""; }

Return the extension string to set on cache files of this specific collider (".octree" for
octree colliders for example).

virtual bool read(std::ifstream &colliderInput) { return false; }

Use the provided input file stream (previously initialized) to build your collider structure
according to your own storage format. Boolean return value should be false when
something went wrong during the read operation, and true otherwise.

virtual bool write(std::ofstream &colliderOutput) { return false; }

Use the provided output file stream (previously initialized) to store your collider structure,
following of course the same format as read() if you want your caching system to work.

You can always check SceneGraph/Colliders/OctreeCollider.cpp for an example of
implementation of these methods.

